MIDTERM COMPLEX ANALYSIS,

December 9th, 2019, 9:00am-11:00am,

Aletta Jacobshal 01, A1–I8.

Please provide complete arguments and/or calculations for each of your answers. The exam consists of 3 questions. You can score up to 6 points for each question, and you obtain 2 points for free.

In this way you will score in total between 2 and 20 points.

- (1) For any $a \in \mathbb{C}$ let $f_a \colon \mathbb{C} \to \mathbb{C}$ be the function given by $f(z) = z^3 + 3z + a$.
 - (a) (2 points.) Show that for $a \neq \pm 2i$ all zeros of f(z) have multiplicity one.
 - (b) (2 points.) In terms of $x, y \in \mathbb{R}$ such that z = x + iy, find the real part u(x, y) of $f_a(z)$ and show by explicit calculation that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} = 0$.
 - (c) (2 points.) Now generalize the above as follows: assume $f: \mathbb{C} \to \mathbb{C}$ is analytic; you may assume that its real part u(x, y) and its imaginary part v(x, y) are sufficiently often differentiable with respect to both x and y. Show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.
- (2) Consider $f: \mathbb{C} \to \mathbb{C}$ given by $f(z) = |z|^2$.
 - (a) (2 points.) What is the range of the function f?
 - (b) (2 points.) Prove that f is not differentiable in $z \neq 0$.
 - (c) (2 points.) Prove that f is differentiable in z = 0.
- (3) Let $D = \mathbb{C} \setminus \mathbb{R}_{\leq 0}$. We consider $\text{Log}: D \to \mathbb{C}$ defined by $\text{Log}(z) = \log(|z|) + i \arg(z)$.
 - (a) (2 points.) Let γ be the semi-circle parametrized by $2e^{it}$, with $-\pi/2 \leq t \leq \pi/2$. Determine $\int_{\gamma} \text{Log}(z) dz$.
 - (b) (2 points.) For ε > 0 (and < 2) let ℓ be the vertical line segment from i ε to 2i. Determine ∫_ℓ Log(z) dz.
 - (c) (2 points.) Note that (z Log(z) z)' = Log(z). What is $\int_{\Gamma} \text{Log}(z) dz$ if Γ is the closed loop consisting of γ , ℓ , the line segment from -2i to $-i\epsilon$, and the semicircle in D from $-i\epsilon$ to $i\epsilon$?