Midterm Complex Analysis,
December 9th, 2019, 9:00am-11:00am,
Aletta Jacobshal 01, A1-I8.
Please provide complete arguments and/or calculations for each of your answers. The exam consists of 3 questions. You can score up to 6 points for each question, and you obtain 2 points for free.
In this way you will score in total between 2 and 20 points.
(1) For any $a \in \mathbb{C}$ let $f_{a}: \mathbb{C} \rightarrow \mathbb{C}$ be the function given by $f(z)=z^{3}+3 z+a$.
(a) (2 points.) Show that for $a \neq \pm 2 i$ all zeros of $f(z)$ have multiplicity one.
(b) (2 points.) In terms of $x, y \in \mathbb{R}$ such that $z=x+i y$, find the real part $u(x, y)$ of $f_{a}(z)$ and show by explicit calculation that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
(c) (2 points.) Now generalize the above as follows: assume $f: \mathbb{C} \rightarrow \mathbb{C}$ is analytic; you may assume that its real part $u(x, y)$ and its imaginary part $v(x, y)$ are sufficiently often differentiable with respect to both x and y. Show that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
(2) Consider $f: \mathbb{C} \rightarrow \mathbb{C}$ given by $f(z)=|z|^{2}$.
(a) (2 points.) What is the range of the function f ?
(b) (2 points.) Prove that f is not differentiable in $z \neq 0$.
(c) (2 points:) Prove that f is differentiable in $z=0$.
(3) Let $D=\mathbb{C} \backslash \mathbb{R}_{\leq 0}$. We consider Log: $D \rightarrow \mathbb{C}$ defined by $\log (z)=\log (|z|)+$ $i \arg (z)$.
(a) (2 points.) Let γ be the semi-circle parametrized by $2 e^{i t}$, with $-\pi / 2 \leq$ $t \leq \pi / 2$. Determine $\int_{\gamma} \log (z) d z$.
(b) (2 points.) For $\epsilon>0$ (and <2) let ℓ be the vertical line segment from $i \epsilon$ to $2 i$. Determine $\int_{\ell} \log (z) d z$.
(c) (2 points.) Note that $(z \log (z)-z)^{\prime}=\log (z)$. What is $\int_{\Gamma} \log (z) d z$ if Γ is the closed loop consisting of γ, ℓ, the line segment from $-2 i$ to $-i \epsilon$, and the semicircle in D from $-i \epsilon$ to $i \epsilon$?

